Removing motion and physiological artifacts from intrinsic BOLD fluctuations using short echo data
نویسندگان
چکیده
Differing noise variance across study populations has been shown to cause artifactual group differences in functional connectivity measures. In this study, we investigate the use of short echo time functional MRI data to correct for these noise sources in blood oxygenation level dependent (BOLD)-weighted time series. A dual-echo sequence was used to simultaneously acquire data at both a short (TE=3.3 ms) and a BOLD-weighted (TE=35 ms) echo time. This approach is effectively "free," using dead-time in the pulse sequence to collect an additional echo without affecting overall scan time or temporal resolution. The proposed correction method uses voxelwise regression of the short TE data from the BOLD-weighted data to remove noise variance. In addition to a typical resting state scan, non-compliant behavior associated with patient groups was simulated via increased head motion or physiological fluctuations in 10 subjects. Short TE data showed significant correlations with the traditional motion-related and physiological noise regressors used in current connectivity analyses. Following traditional preprocessing, the extent of significant additional variance explained by the short TE data regressors was significantly correlated with the average head motion across the scan in the resting data (r(2)=0.93, p<0.0001). The reduction in data variance following the inclusion of short TE regressors was also correlated with scan head motion (r(2)=0.48, p=0.027). Task-related data were used to demonstrate the effects of the short TE correction on BOLD activation time series with known temporal structure; the size and strength of the activation were significantly decreased, but it is not clear whether this reflects BOLD contamination in the short TE data or correlated changes in blood volume. Finally, functional connectivity maps of the default mode network were constructed using a seed correlation approach. The effects of short TE correction and low-pass filtering on the resulting correlations maps were compared. Results suggest that short TE correction more accurately differentiates artifactual correlations from the correlations of interest in conditions of amplified noise.
منابع مشابه
Functional connectivity in the rat at 11.7 T: Impact of physiological noise in resting state fMRI
Resting state functional MRI (rs-fMRI) of the brain has the potential to elicit networks of functional connectivity and to reveal changes thereof in animal models of neurological disorders. In the present study, we investigate the contribution of physiological noise and its impact on assessment of functional connectivity in rs-fMRI of medetomidine sedated, spontaneously breathing rats at ultrah...
متن کاملNeural interpretation of blood oxygenation level-dependent fMRI maps at submillimeter columnar resolution.
Whether conventional gradient-echo (GE) blood oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) is able to map submillimeter-scale functional columns remains debatable mainly because of the spatially nonspecific large vessel contribution, poor sensitivity and reproducibility, and lack of independent evaluation. Furthermore, if the results from optical imaging of in...
متن کاملTissue specificity of nonlinear dynamics in baseline fMRI.
In this work, recent advances in the field of nonlinear dynamics (NLD) were applied to fMRI data to examine the spatio-temporal properties of BOLD resting state fluctuations. Five human subjects were imaged during resting state (visual fixation) at 3T using single-shot gradient echo planar imaging (EPI). Respiration and cardiac signals were concurrently recorded for retrospectively removing flu...
متن کاملIntegrated strategy for improving functional connectivity mapping using multiecho fMRI.
Functional connectivity analysis of resting state blood oxygen level-dependent (BOLD) functional MRI is widely used for noninvasively studying brain functional networks. Recent findings have indicated, however, that even small (≤1 mm) amounts of head movement during scanning can disproportionately bias connectivity estimates, despite various preprocessing efforts. Further complications for inte...
متن کاملNoise Reduction in Arterial Spin Labeling Based Functional Connectivity Using Nuisance Variables
Arterial Spin Labeling (ASL) perfusion image series have recently been utilized for functional connectivity (FC) analysis in healthy volunteers and children with autism spectrum disorders (ASD). Noise reduction by using nuisance variables has been shown to be necessary to minimize potential confounding effects of head motion and physiological signals on BOLD based FC analysis. The purpose of th...
متن کامل